inorganic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

$Cs_6Mo_{27}S_{31}$: a novel ternary reduced molybdenum sulfide containing Mo_9 and Mo_{18} clusters

S. Picard, D. Salloum, P. Gougeon* and M. Potel

Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA CNRS No. 6511, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes CEDEX, France Correspondence e-mail: patrick.gougeon@univ-rennes1.fr

Received 19 February 2003 Accepted 2 September 2003 Online 22 October 2003

The crystal structure of hexacaesium heptacosamolybdenum hentriacontasulfide, $Cs_6Mo_{27}S_{31}$, consists of a mixture of $Mo_9S_{11}S_6$ and $Mo_{18}S_{20}S_6$ cluster units in a 1:1 ratio. The units are connected through Mo-S bonds. Cs^+ cations occupy large voids between the different cluster units.

Comment

The crystal structures of the reduced molybdenum chalcogenides are characterized by metal-metal bonding that manifests itself as discrete clusters of diverse sizes and geometries. Up to now, 11 different Mo clusters with nuclearities in the range 3-36 have been synthesized in solidstate compounds. Clusters with a nuclearity higher than six, *i.e.* Mo_{3n} (*n* = 3, 4, 5, 6, 7, 8, 10 and 12) result from the onedimensional *trans* face-sharing of n-1 Mo₆ octahedra. The Mo_{3n} clusters are surrounded by 3n+8 chalchogenide atoms, thus forming $Mo_{3n}X_{3n+2}^iX_6^a$ units, which share the six external X^{a} atoms, hence creating the Mo–X framework. Large voids or channels, in which the cations reside, are formed between the $Mo_{3n}X_{3n+2}$ units. Compounds containing such clusters can be classified into two groups. The first group comprises the reduced molybdenum chalcogenides, the crystal structures of which contain only one type of cluster. This group is particularly well represented by the series of compounds $M_{n-2}Mo_{3n}X_{3n+2}$ (*M* = Rb and Cs; *X* = S, Se and Te; *n* = 3, 4, 5, 6, 7, 8, 10 and 12), which contain Mo₉, Mo₁₂, Mo₁₅, Mo₁₈, Mo₂₁, Mo₂₄, Mo₃₀ and Mo₃₆ clusters (Gougeon, 1984; Gougeon et al., 1984, 1987, 1988, 1989a,b, 1990; Thomas et al., 1997; Gautier et al., 1998; Picard, Gougeon & Potel, 1999; Picard, Haletet et al., 1999). The second group is based on compounds containing clusters of different nuclearities in equal proportion and is represented by the $Rb_{2n}Mo_9S_{11}Mo_{6n}S_{6n+2}$ (*n* = 1, 2, 3, 4 and 5) series of compounds (Picard et al., 2000). Interest in these Mo cluster compounds lies not only in their fascinating structural aspect but also in their physical properties. For example, the $Rb_{2n}Mo_9S_{11}Mo_{6n}S_{6n+2}$ (*n* = 1, 2, 3 and 4) compounds are superconducting, with critical temperatures ranging from 4.2 to 11 K.

We present here the crystal structure of $Cs_6Mo_{27}S_{31}$, which contains $Mo_9S^i_{11}S^a_6$ and $Mo_{18}S^i_{20}S^a_6$ cluster units in equal proportion. This compound is isostructural with Rb₆Mo₂₇S₃₁ and is the third member of the $Cs_{2n}Mo_9S_{11}Mo_{6n}S_{6n+2}$ series. The Mo₉S₁₁ and Mo₁₈S₂₀ cluster units are centred at 6a (D3 or 32 symmetry) and 6b positions (S_6 or $\overline{3}$ symmetry), respectively (Fig. 1). The Mo–Mo distances within the Mo₉ clusters are 2.6771 (3) and 2.6925 (4) Å for the intratriangle distances (distances within the Mo₃ triangles formed by Mo atoms related through the threefold axis), and 2.7313(2) and 2.7820 (2) Å for the intertriangle distances. The Mo-Mo distances within the Mo₁₈ clusters are 2.6341 (3)–2.6804 (3) Å for the intratriangle distances and 2.7139 (2)-2.7479 (2) A for the distances between the Mo₃ triangles (Table 1). S atoms bridge either one (S1, S3, S5 and S6) or two (S2, S4 and S5) Mo triangular faces of the clusters. Moreover, atoms S1 and S3 are linked to an Mo atom of a neighbouring cluster. The Mo-S bond distances range from 2.4115 (5) to 2.6267 (4) Å within the Mo_9S_{11} unit and from 2.3982 (7) to 2.5857 (6) Å within the Mo₁₈S₂₀ unit. The Mo-Mo and Mo-S distances in both units are similar to those observed in Rb₆Mo₂₇S₃₁ (Picard et al., 2000), since the greatest difference is 0.01 Å for the Mo-Mo and Mo-S bonds. This fact clearly shows that the number of electrons in each Mo₉ and Mo₁₈ cluster should be almost the same in both compounds. Each Mo₉S₁₁ unit is connected to six Mo₁₈S₂₀ units (and *vice versa*) *via* Mo1–S3 bonds (Mo3–S1), thus forming a three-dimensional Mo-S framework with a connectivity of $Mo_9S_5^iS_{6/2}^{i-a}S_{6/2}^{a-i}$, $Mo_{18}S_{14}^iS_{6/2}^{i-a}S_{6/2}^{a-i}$ (Fig. 2). As a result of this arrangement, the shortest Mo1-Mo3 distance

Figure 1 A view of the structure of Cs₆Mo₂₇S₃₁ along [110].

Figure 2

A structure diagram showing the atom-numbering scheme and the linkage of the $Mo_9S_{11}S_6$ and $Mo_{18}S_{20}S_6$ cluster units. Displacement ellipsoids are drawn at the 97% probability level.

between the Mo₉ and Mo₁₈ clusters is 3.2864 (2) Å, indicating only weak metal-metal interactions. The Mo1-Mo3 distance is slightly longer than the distance of 3.223 (1) A observed in $Rb_6Mo_{27}S_{31}$, as expected from the larger size of the Cs⁺ cations.

The alkali metal cations are arranged in finite chains along the threefold axis between two adjacent Mo_9S_{11} and $Mo_{18}S_{20}$ units. The Cs1⁺ and Cs3⁺ cations at both ends of the finite chains are in a tetracapped trigonal-prismatic coordination around the S atoms, and the Cs2⁺ cations are in a tricapped trigonal coordination (Fig. 3). The latter environment is

Figure 3

The coordination environments of the Cs⁺ ions. [Symmetry codes: (i) $\frac{1}{3} + x - y, -\frac{1}{3} - y, \frac{1}{6} - z; (ii) \frac{7}{3} - x + y, \frac{2}{3} + y, \frac{1}{6} + z; (iii) \frac{4}{3} + y, -\frac{4}{3} + x, \frac{1}{6} - z;$ $(iv)\frac{4}{3} - x, \frac{2}{3} - x + y, \frac{1}{6} + z; (v)\frac{4}{3} - x + y, -\frac{1}{3} + y, \frac{1}{6} + z; (vi)\frac{1}{3} + x, -\frac{4}{3} + x - y,$ $\frac{1}{6} + z.$]

similar to that encountered in the quasi-one-dimensional $M_2 Mo_6 X_6$ compounds (Potel, 1981). The Cs-S distances cover the range 3.2828 (5)-3.9872 (6) Å.

Cs₆Mo₂₇S₃₁ was found to be superconducting at 3.3 K (7 K for Rb₆Mo₂₇S₃₁) from alternating current susceptibility measurements on a batch of single crystals.

Experimental

Single crystals of Cs₆Mo₂₇S₃₁ were prepared from a mixture of Cs₂MoS₄, MoS₂ and Mo with an overall composition of Cs₉Mo₄₂S₄₈. All handling of the materials was carried out in an argon-filled glovebox. The initial mixture (\sim 5 g) was cold-pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc-welding system. The charge was heated at a rate of $300 \text{ K} \text{ h}^{-1}$ to 1773 K, held at that temperature for 48 h, cooled at 100 K h⁻¹ to 1373 K, and finally furnace cooled. The product of the reaction appeared to be homogeneous and contained black and well faceted single crystals that were extracted by hand.

Crystal data

$Cs_6Mo_{27}S_{31}$	Mo $K\alpha$ radiation	
$M_r = 4381.70$	Cell parameters from 94 508	
Hexagonal, $R\overline{3}c$	reflections	
a = 9.44240 (5) Å	$\theta = 2.6-40.3^{\circ}$	
c = 110.0790 (7) Å	$\mu = 10.69 \text{ mm}^{-1}$	
$V = 8499.62 (8) \text{ Å}^3$	T = 293 (2) K	
Z = 6	Irregular block, black	
$D_x = 5.136 \text{ Mg m}^{-3}$	$0.20 \times 0.17 \times 0.14 \text{ mm}$	

Data collection

Nonius KappaCCD diffractometer φ scans ($\kappa = 0$) and additional ω scans Absorption correction: analytical (de Meulenaer & Tompa, 1965)

 $T_{\min} = 0.275, T_{\max} = 0.454$ 85 183 measured reflections

5858 independent reflections 4683 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{\text{max}}^{\text{int}} = 40.0^{\circ}$ $h = -17 \rightarrow 17$ $k = -17 \rightarrow 14$ $l = -198 \rightarrow 198$

Table 1

Selected interatomic distances (Å).

Cs1-S1 ⁱ	3.2828 (5)	Mo2-S2	2.4708 (6)
Cs1-S7	3.3076 (9)	Mo2-Mo2 ^v	2.6925 (4)
Cs1-S2	3.6495 (4)	Mo3-S7	2.3982 (7)
Cs1-S3 ⁱ	3.7813 (6)	Mo3-S1 ^{vii}	2.4632 (5)
Cs2-S4 ⁱⁱ	3.5439 (6)	Mo3-S3	2.4905 (6)
Cs2-S5 ⁱⁱ	3.7232 (6)	Mo3-S3 ⁱⁱⁱ	2.5025 (6)
Cs2-S3 ⁱⁱⁱ	3.7255 (6)	Mo3-S4	2.5857 (6)
Cs3-S6	3.5535 (9)	Mo3-Mo3 ^{ix}	2.6341 (3)
Cs3-S5 ^{iv}	3.5857 (6)	Mo3-Mo4 ^{ix}	2.7139 (2)
Cs3-S4 ^v	3.6020 (6)	Mo3-Mo4	2.7479 (2)
Cs3-S5 ^{vi}	3.9872 (6)	Mo4-S4 ⁱⁱⁱ	2.4711 (6)
Mo1-S6	2.4143 (7)	Mo4-S3 ⁱⁱⁱ	2.4723 (5)
Mo1-S1	2.4322 (6)	Mo4-S4	2.4802 (6)
Mo1-S1 ^{vii}	2.4529 (6)	Mo4-S5	2.5787 (6)
Mo1-S3	2.5303 (6)	Mo4-Mo5 ⁱⁱⁱ	2.6634 (2)
Mo1-S2	2.6267 (4)	Mo4-Mo5	2.6779 (2)
Mo1-Mo1 ^v	2.6771 (3)	Mo4-Mo4 ⁱⁱⁱ	2.6804 (3)
Mo1-Mo2 ^{vii}	2.73130 (18)	Mo5-S5	2.4863 (6)
Mo1-Mo2	2.78199 (19)	Mo5-S5 ^{ix}	2.5047 (6)
Mo1-Mo3	3.2864 (2)	Mo5-S5 ^x	2.5800 (6)
Mo2-S1 ^{viii}	2.4115 (5)	Mo5-S4	2.5831 (6)
Mo2-S1	2.4117 (5)	Mo5-Mo5 ^{ix}	2.6679 (3)
Mo2-S2 ^v	2.4708 (6)	Mo5-Mo5 ^x	2.7139 (3)

Symmetry codes: (i) $\frac{4}{3} + y$, $x - \frac{4}{3}$, $\frac{1}{6} - z$; (ii) -y, x - y - 1, z; (iii) 2 - x + y, 1 - x, z; (iv) x, y - 1, z; (v) 2 - x + y, -x, z; (vi) 1 - x, -1 - y, -z; (vii) -y, x - y - 2, z; (viii) $x - y - \frac{2}{3}, -\frac{4}{3} - y, -1 - z + \frac{7}{6}$; (ix) 1 - y, x - y - 1, z; (x) x - y, x - 1, -z.

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & (\Delta/\sigma)_{\rm max} = 0.001 \\ R[F^2 > 2\sigma(F^2)] = 0.027 & \Delta\rho_{\rm max} = 2.46 \ {\rm e} \ {\rm \AA}^{-3} \\ wR(F^2) = 0.048 & \Delta\rho_{\rm min} = -2.81 \ {\rm e} \ {\rm \AA}^{-3} \\ S = 1.12 & Extinction \ correction: \ SHELXL97 \\ 5858 \ reflections & Extinction \ coefficient: \ 0.000148 \ (2) \\ 99 \ parameters & w = 1/[\sigma^2(F_o^2) + (0.0133P)^2 \\ + 67.7286P] \\ where \ P = (F_o^2 + 2F_c^2)/3 \end{array}$

The highest residual peak was located 0.92 Å from Cs1 and the deepest hole was 0.58 Å from Cs3.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *COLLECT*; data reduction: *EVALCCD* (Duisenberg, 1998); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Bergerhoff, 1996); software used to prepare material for publication: *SHELXL97*.

Intensity data were collected on the Nonius KappaCCD X-ray diffractometer system of the Centre de Diffractométrie de l'Université de Rennes I (www.cdifx.univ-rennes1.fr).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC1009). Services for accessing these data are described at the back of the journal.

References

- Bergerhoff, G. (1996). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The
- Netherlands.
- Gautier, R., Picard, S., Gougeon, P. & Potel, M. (1998). Mater. Res. Bull. 34, 93–101.
- Gougeon, P. (1984). PhD thesis, University of Rennes, France.
- Gougeon, P., Padiou, J., Le Marouille, J.-Y., Potel, M. & Sergent, M. (1984). J. Solid State Chem. 51, 218–226.
- Gougeon, P., Potel, M., Padiou, J. & Sergent, M. (1987). Mater. Res. Bull. 22, 1087–1093.
- Gougeon, P., Potel, M., Padiou, J. & Sergent, M. (1988). Mater. Res. Bull. 23, 453–460.
- Gougeon, P., Potel, M. & Sergent, M. (1989a). Acta Cryst. C45, 182-185.
- Gougeon, P., Potel, M. & Sergent, M. (1989b). Acta Cryst. C45, 1413-1415.
- Gougeon, P., Potel, M. & Sergent, M. (1990). Acta Cryst. C46, 2284-2287.
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Picard, S., Gougeon, P. & Potel, M. (1999). Angew. Chem. Int. Ed. 38, 2036– 2036.
- Picard, S., Halet, J.-F., Gougeon, P. & Potel, M. (1999). Inorg. Chem. 38, 4422–4429.
- Picard, S., Saillard, J.-Y., Gougeon, P., Noel, H. & Potel, M. (2000). J. Solid State Chem. 155, 417–426.
- Potel, M. (1981). PhD thesis, University of Rennes, France.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Thomas, C., Picard, S., Gautier, R., Gougeon, P. & Potel, M. (1997). J. Alloys Compd, 262, 305–310.